B.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - NOVEMBER 2013
PH 4504/PH 4502/PH 6604 - MATHEMATICAL PHYSICS
Date: 05/11/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

PART-A

Answer ALL questions:

1. Express $\mathrm{z}=1+\mathrm{i}$ in polar form.
2. What is a rational function?
3. State true or False: Analyticity of a function depends on the domain of definition.
4. Give two properties of complex line integral.
5. State Cauchy's integral theorem.
6. Write 2-dimensional Laplace equation in polar form.
7. If $\mathrm{x}=\mathrm{a} \sin (\omega \mathrm{t})$ is a solution of $\frac{d^{2} x}{d t^{2}}+\frac{\kappa}{m} x=0$. Find ω.
8. Define Fourier sine transform.
9. Write Simpson's $\frac{1}{3}$ rd rule for integration.
10. Define the terms order and degree of a differential equation.

PART-B

Answer any FOUR questions:
11. Simplify the following a) $\frac{1+i}{1-i}$; b) $\frac{(2+i)(3+i)}{(1+i)}$; Locate them in the complex plane.
12. Prove Cauchy's integral theorem.
13. State and prove convolution theorem for Fourier transforms.
14. Describe the D'Alamber's solution for the wave equation.
15. Use Euler's method to find $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$ for the equation $\frac{d y}{d x}=x+y$ with $\mathrm{y}(0)=0$. Take step size as 0.2 .

PART-C

Answer any FOUR questions
16. a) Define the singular point of a complex function .
b) Establish the Cauchy-Riemann relation for a analytic complex function.
c) Prove that $f(x, y)=x^{2}-y^{2}+2 i x y$ is analytic.
17. a) State and prove Cauchy's integral formula
b) Evaluate $\iint_{c} \frac{d z}{z}$. Here c is a unit circle.
18. a) Deduce the differential equation satisfied by the vibrating string
b) Differentiate partial differential equation from ordinary differential equation.
19. a) If $\mathrm{F}(\mathrm{s})$ is the Fourier transform of $\mathrm{f}(\mathrm{x})$, show that $\mathrm{F}\{\mathrm{f}(\mathrm{ax})\}=(1 / \mathrm{a}) \mathrm{F}(\mathrm{x} / \mathrm{a})$ and $\mathrm{F}\left\{\mathrm{f}^{\mathrm{f}}(\mathrm{x})\right\}=$ is $\mathrm{F}(\mathrm{s})$. where prime means differentiation with respect to x .
b) Find the Fourier transform of $e^{-\alpha x}$.
20. Give the Lagrange's interpolation formula.

Using (x,lnx);(9, 2.19722);(9.5,2.25129);(10,2.30259);(11,2.39790). Find ln (9.2).

